Настоящая статья кратко описывает проблематику энергосбережения, сложившуюся сегодня на подавляющем большинстве отечественных объектов производства, транспортировки и потребления тепловой энергии, предлагая варианты их эффективного решения.
Существующие тепловые системы, в основной своей массе, проектировались и создавались без учета возможностей, появившихся на теплоэнергетичском рынке в течение последних 10 лет. Массовое развитие вычислительной техники обусловило появление в это время огромного количества технологических новшеств, которые коренным образом изменили ситуацию в энергосбережении. Например, возможность точного моделирования тепловых процессов на ЭВМ привела к появлению новых эффективных конструкций котлоагрегатов и схем отопления, а достижения электронной индустрии обеспечили возможность широкого применения средств учета тепловой энергии и высокоэкономичных регулирующих устройств.
Таким образом, в конце ХХ века энергосбережение получило на свое вооружение большое количество эффективных технологий и новое оборудование, позволяющее значительно (до 50%) повысить надежность и экономичность работы уже существующих тепловых систем и проектировать новые системы, качественно отличающиеся от уже существующих.
Энергосбережение. Аксиомы.
Для оценки эффективности работы любой системы, в том числе теплоэнергетической, обычно используется обобщенный физический показатель, - коэффициент полезного действия (КПД). Физический смысл КПД - отношение величины полученной полезной работы (энергии) к затраченной. Последняя, в свою очередь, представляет собой сумму полученной полезной работы (энергии) и потерь, возникающих в системных процессах. Таким образом, увеличения КПД системы (а значит и повышения ее экономичнсти) можно достигнуть только снижением величины непроизводительных потерь, возникающих в процессе работы. Это и является главной задачей энергосбережения.
Основной же проблемой, возникающей при решении этой задачи, является выявление наиболее крупных составляющих этих потерь и выбор оптимального технологического решения, позволяющего значительно снизить их влияние на величину КПД. Причем каждый конкретный объект, - цель энергосбережения, - имеет ряд характерных конструктивных особенностей и составляющие его тепловых потерь различны по величине. И всякий раз, когда речь заходит о повышении экономичности работы теплоэнергетического оборудования (например, системы отопления), перед принятием решения в пользу использования какого-нибудь технологического новшества, необходимо обязательно провести детальное обследование самой системы и выявить наиболее существенные каналы потерь энергии. Разумным решением будет использование только таких технологий, которые существенно снизят наиболее крупные непроизводительные составляющие потерь энергии в системе и при минимальных затратах значительно повысят эффективность ее работы.
Однако, несмотря на уникальность в общем случае факторов, вызывающих потери в каждой конкретной тепловой системе, отечественные объекты имеют ряд особенностей. Они очень похожи друг на друга, что связано с тем, что строились они по общим для "Союза" проектным нормам во времена, когда тепловая энергия стоила "копейки". Характерные проблемы и основные каналы тепловых потерь в энергосистемах "постсоветских" объектов хорошо изучены специалистами нашего предприятия. Решение подавляющего большинства проблем энергосбережения на них отработано нами на практике, что позволяет провести анализ, рассмотреть наиболее характерные ситуации с тепловыми потерями и предложить варианты их решения с прогнозированием результатов, основываясь на наш опыт работы с подобными ситуациями на других объектах.
Тепловые системы. Источники потерь.
Любую теплоэнергетическую систему с целью анализа можно условно разбить на 3-х основных участка:
1. участок производства тепловой энергии (котельная); 2. участок транспортировки тепловой энергии потребителю (трубопроводы тепловых сетей); 3. участок потребления тепловой энергии (отапливаемый объект).
Каждый из приведенных участков обладает характерными непроизводительными потерями, снижение которых и является основной функцией энергосбережения.
|