Основная задача струйных термонасосов (ТН) — это преобразовать теплоту среды в кинетическую энергию жидкости. В качестве рабочей среды используется пар, двухфазная среда или насыщенная жидкость, а инжектируемой (холодный источник) — жидкость с более низкой температурой. В результате обменных процессов — механического, тёпло- и массообмена осуществляется разгон жидкости, конденсация пара и выравнивание температур. Давление полного торможения за струйным термонасосом может быть существенно выше давлений торможения смешиваемых сред. На рис. показаны одна из возможных схем ТН и распределение статических давлений вдоль его длины при переменных противодавлениях.
На схеме приняты обозначения:
- 1 - сопло, через которое подводится пар или жидкость с расходом Gr;
- 2 - подвод холодной жидкости Gx;
- 3 - камера смешения;
- 4 - диффузор.
При истечении насыщенной жидкости происходит ее бурное испарение и перед камерой смешения движется высокоскоростной двухфазный капельный поток, который взаимодействует с потоком холодной жидкости. Происходит дробление жидкости на мелкие капли и их ускорение, конденсация пара и постепенное изменение структуры двухфазного потока из капельного в пузырьковый. Вблизи минимального сечения камеры смешения на входе в диффузор происходит резкое, скачкообразное повышение статического давления. Это связано с тем, что скорость двухфазного потока достигает сверхзвуковых значений (скорость звука в пузырьковой среде мала) и создаются условия для образования адиабатных скачков уплотнения. В скачке может происходить «захлопывание» пузырьков и полная конденсация паровой фазы. Аналогичный характер течения в ТН наблюдается, когда вместо насыщенной жидкости используется перегретый или влажный пар. На рис. показано изменение статического давления при различных положениях регулирующего клапана, расположенного за ТН. С увеличением сопротивления, создаваемого клапаном, давление растет до определенного, предельного значения (кривая 3). Дальнейшее прикрытие клапана приводит к срыву в работе ТН. Доказательством того, что в конце камеры смешения поток сверхзвуковой, служит отсутствие расслоения кривых давления в этой зоне.
Оптимальные геометрические размеры ТН и соответственно максимальное повышение давления зависят от коэффициента инжекции, начальных параметров рабочей среды (давления, температуры, степени сухости); давления и температуры холодного источника.
В настоящее время отработанные инжекторные методы расчета ТН отсутствуют. Выбор оптимальных геометрических размеров в зависимости от параметров рабочей среды. холодного источника и базируется, как правило, на экспериментальных исследованиях.
Приближенный расчет ТН можно произвести, полагая, что: давление в камере смешения постоянно; максимальному противодавлению соответствует положение скачка во входном сечении диффузора; распределения скоростей и параметров в поперечных сечениях ТН являются равномерными.